Constrained-Order Prophet Inequalities

to appear in SODA '21

Makis Arsenis, Odysseas Drosis (EPFL), Robert Kleinberg

Cornell University
https://arxiv.org/abs/2010.09705

Prophet Inequalities

Prophet Inequalities - Example

[^0]
Prophet Inequalities - Example

Prophet Inequalities - Example

$$
\$ 17 \quad \$ 3 \quad \begin{array}{rrr}
\$ 1,000, & \text { w.p. } 0.01 \\
\$ 0, & \text { w.p. } 0.99
\end{array} \quad \mathrm{U}[\$ 0, \$ 10]
$$

Prophet Inequalities - Example

\$17
\$3
\$0
$\mathrm{U}[\$ 0, \$ 10]$

Prophet Inequalities - Example

\$17
 \$3
 $\$ 0$
 \$6

Prophet Inequalities — Standard setting

- Sequence of n independent, non-negative random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

Prophet Inequalities — Standard setting

- Sequence of n independent, non-negative random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- Gambler: Knows \mathbf{n} and the distribution \mathcal{D}_{i} of each X_{i}. Can inspect the r.v.'s in the given order. Accepts at most one of the values, X_{τ}, as reward. Acceptance decisions are irrevocable.

Prophet Inequalities — Standard setting

- Sequence of n independent, non-negative random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- Gambler: Knows \mathbf{n} and the distribution \mathcal{D}_{i} of each X_{i}. Can inspect the r.v.'s in the given order. Accepts at most one of the values, X_{τ}, as reward. Acceptance decisions are irrevocable.
- Prophet: Knows the values of all variables. Always chooses the maximum of them, i.e. $\mathbf{X}_{*}=\max _{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$.

Prophet Inequalities — Standard setting

- Sequence of n independent, non-negative random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- Gambler: Knows \mathbf{n} and the distribution \mathcal{D}_{i} of each X_{i}.

Can inspect the r.v.'s in the given order.
Accepts at most one of the values, X_{τ}, as reward.
Acceptance decisions are irrevocable.

- Prophet: Knows the values of all variables. Always chooses the maximum of them, i.e. $\mathbf{X}_{*}=\max _{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$.
- Stopping rule τ : Algorithm that gambler follows for a given $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$.

Prophet Inequalities — Standard setting

- Sequence of n independent, non-negative random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- Gambler: Knows \mathbf{n} and the distribution \mathcal{D}_{i} of each X_{i}.

Can inspect the r.v.'s in the given order.
Accepts at most one of the values, X_{τ}, as reward.
Acceptance decisions are irrevocable.

- Prophet: Knows the values of all variables. Always chooses the maximum of them, i.e. $\mathbf{X}_{*}=\max _{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$.
- Stopping rule τ : Algorithm that gambler follows for a given $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$.
- Prophet Inequality is a statement of the following form:

For all $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$, there exists a stopping rule τ s.t.:

$$
\mathbb{E}\left[X_{\tau}\right] \geq r \cdot \mathbb{E}\left[X_{*}\right]
$$

Prophet Inequalities — Standard setting

- Sequence of n independent, non-negative random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- Gambler: Knows \mathbf{n} and the distribution \mathcal{D}_{i} of each X_{i}.

Can inspect the r.v.'s in the given order.
Accepts at most one of the values, X_{τ}, as reward.
Acceptance decisions are irrevocable.

- Prophet: Knows the values of all variables. Always chooses the maximum of them, i.e. $\mathbf{X}_{*}=\max _{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$.
- Stopping rule τ : Algorithm that gambler follows for a given $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$.
- Prophet Inequality is a statement of the following form:

For all $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$, there exists a stopping rule τ s.t.:

$$
\mathbb{E}\left[X_{\tau}\right] \geq r \cdot \mathbb{E}\left[X_{*}\right]
$$

- Gambler-to-prophet/Competitive ratio:

$$
r=\inf _{\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}} \sup _{\text {Stopping rule } \tau} \frac{\mathbb{E}\left[X_{\tau}\right]}{\mathbb{E}\left[X_{*}\right]}
$$

A Note on Stopping Rules

- Threshold stopping rule: Gambler decides on a threshold T.
- If Gambler reaches $X_{i}>T$, then Gambler accepts.
- If Gambler reaches $X_{i}<T$, then Gambler rejects and proceeds.

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70 s and 80 s.

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70s and 80s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70 s and 80 s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!
- Regained attention by Computer Scientists in the late 2000s because of it's applications in Mechanism Design:

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70 s and 80 s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!
- Regained attention by Computer Scientists in the late 2000s because of it's applications in Mechanism Design:
- Selling an item to n potential buyers.

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70s and 80s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!
- Regained attention by Computer Scientists in the late 2000s because of it's applications in Mechanism Design:
- Selling an item to n potential buyers.
- Buyers arrive sequentially and are offered a take-it or leave-it price for the item.

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70s and 80s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!
- Regained attention by Computer Scientists in the late 2000s because of it's applications in Mechanism Design:
- Selling an item to n potential buyers.
- Buyers arrive sequentially and are offered a take-it or leave-it price for the item.
- Simpler compared to e.g. an auction

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70s and 80s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!
- Regained attention by Computer Scientists in the late 2000s because of it's applications in Mechanism Design:
- Selling an item to n potential buyers.
- Buyers arrive sequentially and are offered a take-it or leave-it price for the item.
- Simpler compared to e.g. an auction
- Take-it or leave-it price corresponds to the threshold of a stopping rule.

Why are we interested in Prophet Inequalities?

- Mathematicians started looking into this problem in the 70s and 80s.
- Models real-life situations where decisions have to be made under uncertainty e.g. Hiring and job interviews, investing in the stock market or even choosing a life partner!
- Regained attention by Computer Scientists in the late 2000s because of it's applications in Mechanism Design:
- Selling an item to n potential buyers.
- Buyers arrive sequentially and are offered a take-it or leave-it price for the item.
- Simpler compared to e.g. an auction
- Take-it or leave-it price corresponds to the threshold of a stopping rule.
- Prophet inequalities provide welfare/revenue guarantees for Sequential Posted-Price Mechanisms.

Standard Prophet Inequality

Theorem ([Samuel-Cahn, 1984, Krengel and Sucheston, 1977])
There exists a (threshold) stopping rule that satisfies a prophet inequality with factor $\mathbf{1 / 2}$.

Standard Prophet Inequality

Theorem ([Samuel-Cahn, 1984, Krengel and Sucheston, 1977])
There exists a (threshold) stopping rule that satisfies a prophet inequality with factor $\mathbf{1 / 2}$.

Proof.
Let T be the threshold and let $\operatorname{Pr}\left[\max X_{i} \geq T\right]=p \in[0,1]$.

Standard Prophet Inequality

Theorem ([Samuel-Cahn, 1984, Krengel and Sucheston, 1977])
There exists a (threshold) stopping rule that satisfies a prophet inequality with factor $\mathbf{1 / 2}$.

Proof.
Let T be the threshold and let $\operatorname{Pr}\left[\max X_{i} \geq T\right]=p \in[0,1]$.

$$
\begin{aligned}
\mathbb{E}\left[X_{*}\right] & =\mathbb{E}\left[\max _{i=1}^{n} X_{i}\right] \\
& \leq \mathbb{E}\left[T+\max _{i=1}^{n}\left(X_{i}-T\right)^{+}\right] \\
& \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
\end{aligned}
$$

Standard Prophet Inequality

Theorem ([Samuel-Cahn, 1984, Krengel and Sucheston, 1977])
There exists a (threshold) stopping rule that satisfies a prophet inequality with factor $\mathbf{1 / 2}$.

Proof.
Let T be the threshold and let $\operatorname{Pr}\left[\max X_{i} \geq T\right]=p \in[0,1]$.

$$
\begin{aligned}
\mathbb{E}\left[X_{*}\right] & =\mathbb{E}\left[\max _{i=1}^{n} X_{i}\right] \\
& \leq \mathbb{E}\left[T+\max _{i=1}^{n a x}\left(X_{i}-T\right)^{+}\right] \\
& \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
\end{aligned}
$$

$$
\mathbb{E}\left[X_{\tau}\right]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i} \cdot \mathbb{I}[\tau=i]\right]
$$

$$
=\mathbb{E}\left[\sum_{i=1}^{n} T \cdot \mathbb{I}[\tau=i]+\sum_{i=1}^{n}\left(X_{i}-T\right) \cdot \mathbb{I}[\tau=i]\right]
$$

$$
=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

where $c_{i}=\operatorname{Pr}\left[\right.$ No item is accepted before reaching $\left.X_{i}\right]$.

Standard Prophet Inequality

$$
\begin{gathered}
\mathbb{E}\left[X_{*}\right] \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \quad \mathbb{E}\left[X_{T}\right]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \\
c_{i}=\operatorname{Pr}\left[\text { No item is accepted before reaching } X_{i}\right]
\end{gathered}
$$

Standard Prophet Inequality

$$
\begin{gathered}
\mathbb{E}\left[X_{*}\right] \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \quad \mathbb{E}\left[X_{\tau}\right]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \\
c_{i}=\operatorname{Pr}\left[\text { No item is accepted before reaching } X_{i}\right]
\end{gathered}
$$

Bound c_{i} :

$$
c_{i}=\prod_{j<i} \operatorname{Pr}\left[X_{j}<T\right] \geq \prod_{j=1}^{n} \operatorname{Pr}\left[X_{j}<T\right]=1-p
$$

Standard Prophet Inequality

$$
\mathbb{E}\left[X_{*}\right] \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \quad \mathbb{E}\left[X_{\tau}\right]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

$c_{i}=\operatorname{Pr}\left[\right.$ No item is accepted before reaching $\left.X_{i}\right] \geq 1-p$

Standard Prophet Inequality

$$
\mathbb{E}\left[X_{*}\right] \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \quad \mathbb{E}\left[X_{\tau}\right]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

$$
c_{i}=\operatorname{Pr}\left[\text { No item is accepted before reaching } X_{i}\right] \geq 1-p
$$

Substitute back,

$$
\mathbb{E}[\text { Gambler }] \geq p T+(1-p) \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

Standard Prophet Inequality

$$
\mathbb{E}\left[X_{*}\right] \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \quad \mathbb{E}\left[X_{\tau}\right]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

$$
c_{i}=\operatorname{Pr}\left[\text { No item is accepted before reaching } X_{i}\right] \geq 1-p
$$

Substitute back,

$$
\mathbb{E}[\text { Gambler }] \geq p T+(1-p) \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

Choose T s.t. $p=1-p$.

$$
\begin{aligned}
\mathbb{E}[\text { Gambler }] & \stackrel{p=1 / 2}{\geq} \frac{1}{2}\left(T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]\right) \\
& \geq \frac{1}{2} \cdot \mathbb{E}[\text { Prophet }]
\end{aligned}
$$

Standard Prophet Inequality

- Previous result is tight even for general stopping rules:

$$
\begin{aligned}
& X_{1}=1, \quad X_{2}= \begin{cases}\frac{1}{\varepsilon}, & \text { w.p. } \varepsilon \\
0, & \text { w.p. } 1-\varepsilon\end{cases} \\
& \mathbb{E}[\text { Prophet }]=\varepsilon \cdot \frac{1}{\varepsilon}+(1-\varepsilon) \cdot 1=2-\varepsilon \\
& \mathbb{E}[\text { Gambler }]=1
\end{aligned}
$$

Standard Prophet Inequality

- Previous result is tight even for general stopping rules:

$$
\begin{aligned}
& X_{1}=1, \quad X_{2}= \begin{cases}\frac{1}{\varepsilon}, & \text { w.p. } \varepsilon \\
0, & \text { w.p. } 1-\varepsilon\end{cases} \\
& \mathbb{E}[\text { Prophet }]=\varepsilon \cdot \frac{1}{\varepsilon}+(1-\varepsilon) \cdot 1=2-\varepsilon \\
& \mathbb{E}[\text { Gambler }]=1
\end{aligned}
$$

- Takeaway: The reason Gambler does bad is high uncertainty far in the future.

Constrained-Order Prophet Inequalities

Constrained-Order Prophet Inequalities

We augment the prophet inequalities model to allow for order-selection:

- Π : set of permutations on $[n]$.
- Gambler can choose any $\pi \in \Pi$ and inspect the variables in that order:

$$
X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}
$$

- Adversarial Order: $\Pi=\{i d\}$, i.e. gambler must inspect the variables in the order given by the adversary.
- Free Order: $\Pi=S_{n}$, the set of all permutations on n elements, i.e. gambler is free to choose any ordering.
- Random Order (Prophet secretary problem): $\Pi=S_{n}$ but π is chosen uniformly at random.
- Forward-Reverse order: $\Pi=\{i d, r e v\}$.
- General Constrained-Order: Arbitrary Π.

Motivation

- Adversarial Order: Models the uncertainty in decision making.
- Free Order: Models the power that choice gives us in decision making under uncertainty.
- Constrained Order: Offers a way to understand better where the power of choice comes from.

What is known?

	Threshold Rules	General Rules
Adversarial	$1 / 2$ [Samuel-Cahn, 1984]	$1 / 2$ [Krengel and Sucheston, 1977]
Free Order	$1-\frac{1}{e}=0.632 \ldots$ [Yan, 2011, Correa et al., 2017]	$\left.\begin{array}{c}\text { LB: } 0.669 \ldots \text { [Correa et al., 2019] } \\ \text { UB: } 0.745 \ldots\end{array}\right]$ [Hill and Kertz, 1982]
Random Order	$1-\frac{1}{e}$	LB: $0.669 \ldots$ [Correa et al., 2019]
	UB: $\sqrt{3}-1=0.732 \ldots$ [Correa et al., 2019]	

Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and Free order setting.

Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and Free order setting.

Definition
For $\Pi \subseteq S_{n}$, define the threshold prophet ratio on Π as follows:

$$
\operatorname{TPR}(\Pi)=\inf _{\mathcal{D}_{1}, \ldots, D_{n}} \sup _{\text {threshold stopping rule on } \Pi} \frac{\mathbb{E}[\text { Gambler }]}{\mathbb{E}[\text { Prophet }]}
$$

Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and Free order setting.

Definition
For $\Pi \subseteq S_{n}$, define the threshold prophet ratio on Π as follows:

$$
\operatorname{TPR}(\Pi)=\inf _{\mathcal{D}_{1}, \ldots, D_{n}} \sup _{\text {threshold stopping rule on } \Pi} \frac{\mathbb{E}[\text { Gambler }]}{\mathbb{E}[\text { Prophet }]}
$$

Q: For a given α, what is the minimum size m of Π such that $\operatorname{TPR}(\Pi) \geq \alpha$?

Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and Free order setting.

Definition
For $\Pi \subseteq S_{n}$, define the threshold prophet ratio on Π as follows:

$$
\operatorname{TPR}(\Pi)=\inf _{\mathcal{D}_{1}, \ldots, D_{n}} \sup _{\text {threshold stopping rule on } \Pi} \frac{\mathbb{E}[\text { Gambler }]}{\mathbb{E}[\text { Prophet }]}
$$

Q: For a given α, what is the minimum size m of Π such that $\operatorname{TPR}(\Pi) \geq \alpha$?

$\alpha \in\left[0, \frac{1}{2}\right]$	$m=1$
$\alpha \in\left(\frac{1}{2}, \varphi^{-1}\right)$	$m=2$
$\alpha \in\left(\varphi^{-1}, 1-\frac{1}{e}\right)$	$m=\Theta(\log n)$
$\alpha=1-\frac{1}{e}$	$m=O\left(n^{2}\right)$

Forward-Reverse Prophet Inequality

Forward-Reverse Order Prophet Inequality

Theorem ([A-Drosis-Kleinberg, SODA '21])
In the forward-reverse prophet inequality setting, there exists a threshold stopping rule with a gambler-to-prophet ratio of at least
$\varphi^{-1}=\frac{\sqrt{5}-1}{2}=0.618 \ldots$

Forward-Reverse Order Prophet Inequality

Theorem ([A-Drosis-Kleinberg, SODA '21])
In the forward-reverse prophet inequality setting, there exists a threshold stopping rule with a gambler-to-prophet ratio of at least
$\varphi^{-1}=\frac{\sqrt{5}-1}{2}=0.618 \ldots$

Proof.

Pick $\pi \in\{i d, r e v\}$ uniformly at random.
Similarly to previous proof, set threshold T s.t. $\operatorname{Pr}\left[\max X_{i} \geq T\right]=p \in[0,1]$. Again,

$$
\begin{aligned}
& \mathbb{E}[\text { Prophet }] \leq T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \\
& \mathbb{E}[\text { Gambler }]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
\end{aligned}
$$

where $c_{i}=\operatorname{Pr}\left[\right.$ No element is selected before reaching $\left.X_{i}\right]$.

Forward-Reverse Order Prophet Inequality

$$
\begin{aligned}
c_{i} & =\frac{1}{2}\left(\prod_{j<i} \operatorname{Pr}\left[X_{j}<T\right]+\prod_{j>i} \operatorname{Pr}\left[X_{j}>T\right]\right) \\
& \stackrel{\text { AM-GM }}{\geq}\left(\prod_{j \neq i}^{n} \operatorname{Pr}\left[X_{j}<T\right]\right)^{1 / 2} \\
& \geq \sqrt{1-p}
\end{aligned}
$$

Substitute back,

$$
\begin{aligned}
\mathbb{E}[\text { Gambler }] & \geq p T+\sqrt{1-p} \cdot \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \\
& \stackrel{p=\underline{\varphi}^{-1}}{ } \varphi^{-1}\left(T+\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]\right) \\
& \geq \varphi^{-1} \cdot \mathbb{E}[\text { Prophet }]
\end{aligned}
$$

Forward/Reverse Order Upper Bound

Lemma

When $n \geq 3$ and $\Pi=\{i d, r e v\}$, no threshold stopping rule can have a gambler-to-prophet ratio greater than φ^{-1}.

Proof sketch.

- For $n=3$:

$$
X_{1}=\mathrm{U}[1-\varepsilon, 1], \quad X_{2}=\left\{\begin{array}{l}
\frac{2 \varphi^{-1}}{\varepsilon}, \quad \text { w.p. } \varepsilon \\
0, \quad \text { w.p. } 1-\varepsilon
\end{array}, \quad X_{3}=\mathrm{U}[1-\varepsilon, 1]\right.
$$

- For $n>3$:

Let $i<j<k$ be arbitrary r.v. indices. Define X_{i}, X_{j}, X_{k} just like X_{1}, X_{2}, X_{3} above and let $X_{I}=0$ for all $I \notin\{i, j, k\}$.

Beating the Golden Ratio

Beating the golden ratio

- Two permutations suffice to go from 0.5 to $\varphi^{-1}=0.618 \ldots$.

Beating the golden ratio

- Two permutations suffice to go from 0.5 to $\varphi^{-1}=0.618 \ldots$.
- Q: How many permutations are needed to guarantee a ratio $>\varphi^{-1}$?

Beating the golden ratio

- Two permutations suffice to go from 0.5 to $\varphi^{-1}=0.618 \ldots$.
- Q: How many permutations are needed to guarantee a ratio $>\varphi^{-1}$?
- Idea: Require the existence of a "central element".

Beating the golden ratio

Definition

We say $j \in[n]$ is ε-centered w.r.t. Π (a set of permutations of [n]) if there exists a probability distribution p on $[n] \backslash\{j\}$ such that:

$$
\begin{aligned}
& \forall \pi \in \Pi: \operatorname{Pr}_{i \sim p}\left[\pi^{-1}(i)<\pi^{-1}(j)\right] \geq 1 / 2-\varepsilon \\
& \operatorname{Pr}_{i \sim p}\left[\pi^{-1}(i)>\pi^{-1}(j)\right] \geq 1 / 2-\varepsilon
\end{aligned}
$$

Beating the golden ratio

Definition

We say $j \in[n]$ is ε-centered w.r.t. Π (a set of permutations of [n]) if there exists a probability distribution p on $[n] \backslash\{j\}$ such that:

$$
\begin{aligned}
& \forall \pi \in \Pi: \operatorname{Pr}_{i \sim p}\left[\pi^{-1}(i)<\pi^{-1}(j)\right] \geq 1 / 2-\varepsilon \\
& \operatorname{Pr}_{i \sim p}\left[\pi^{-1}(i)>\pi^{-1}(j)\right] \geq 1 / 2-\varepsilon
\end{aligned}
$$

Lemma

If Π is a set of permutations of $[n]$ and j is an ε-centered element w.r.t. Π, then $\operatorname{TPR}(\Pi) \leq \varphi^{-1}+O(\varepsilon)$.

Beating the golden ratio

Definition

We say $j \in[n]$ is ε-centered w.r.t. $П$ (a set of permutations of [n]) if there exists a probability distribution p on $[n] \backslash\{j\}$ such that:

$$
\begin{aligned}
& \forall \pi \in \Pi: \operatorname{Pr}_{i \sim p}\left[\pi^{-1}(i)<\pi^{-1}(j)\right] \geq 1 / 2-\varepsilon \\
& \operatorname{Pr}_{i \sim p}\left[\pi^{-1}(i)>\pi^{-1}(j)\right] \geq 1 / 2-\varepsilon
\end{aligned}
$$

Lemma

If Π is a set of permutations of $[n]$ and j is an ε-centered element w.r.t. Π, then $\operatorname{TPR}(\Pi) \leq \varphi^{-1}+O(\varepsilon)$.

Lemma (Exact)
If $|\Pi|<\sqrt{\log n}$, then $\exists j \in[n]$ that is (0)-centered w.r.t. Π.
Lemma (Approximate)
If $|\Pi|<\log _{1 / \varepsilon} n$ for $\varepsilon>0$, then $\exists j \in[n]$ that is ε-centered w.r.t. Π.

Achieving the Optimal Threshold Ratio

Achieving the Optimal Threshold Ratio

Convention:

- Variable indices: $i \in[n]$
- Arrival position: $k \in[n]$

$$
\pi:[n] \rightarrow[n], \quad \sigma=\pi^{-1}:[n] \rightarrow[n]
$$

Definition

A distribution \mathcal{P} over permutations $\Pi \subseteq S_{n}$ is pairwise independent if: $\forall i \neq j \in[n],(\sigma(i), \sigma(j))$ is distributed uniformly over $\{(a, b) \in[n] \times[n] \mid a \neq b\}$ when $\pi \sim \mathcal{P}$.

Achieving the Optimal Threshold Ratio

Convention:

- Variable indices: $i \in[n]$
- Arrival position: $k \in[n]$

$$
\pi:[n] \rightarrow[n], \quad \sigma=\pi^{-1}:[n] \rightarrow[n]
$$

Definition

A distribution \mathcal{P} over permutations $\Pi \subseteq S_{n}$ is pairwise independent if:
$\forall i \neq j \in[n],(\sigma(i), \sigma(j))$ is distributed uniformly over $\{(a, b) \in[n] \times[n] \mid a \neq b\}$ when $\pi \sim \mathcal{P}$.

Remark: Pairwise independent permutations behave like uniformly random permutations,

$$
\begin{aligned}
\operatorname{Pr}_{\pi \sim \mathcal{P}}[\sigma(i)=k] & =\frac{1}{n}, \quad \forall i, k \in[n] \\
\operatorname{Pr}_{\pi \sim \mathcal{P}}[\sigma(j)<k \mid \sigma(i)=k] & =\frac{k-1}{n-1}, \quad \forall i \neq j, k \in[n]
\end{aligned}
$$

Achieving the Optimal Threshold Ratio i

Lemma

For prime n, there exists a set Π of $\mathbf{n}(\mathbf{n}-\mathbf{1})$ permutations such that the uniform distribution over Π is pairwise independent.

Proof sketch: $\pi_{a, b}(k)=a k+b(\bmod n), a \sim \mathrm{U}[n-1], b \sim \mathrm{U}[n]$.

Achieving the Optimal Threshold Ratio i

Theorem ([A.-Drosis-Kleinberg, SODA '21])
Let π be a random permutation of [n] sampled from a pairwise-independent distribution of permutations. Then, there exists a threshold T such that:

$$
\mathbb{E}[\text { Gambler }] \geq\left(1-\frac{1}{e}\right) \cdot \mathbb{E}[\text { Prophet }]
$$

Proof. (resembles [Correa et al., 2019])
Again,

$$
\mathbb{E}[\text { Gambler }]=p T+\sum_{i=1}^{n} c_{i} \cdot \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right]
$$

but now,

$$
c_{i}=\sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \prod_{l=1}^{k-1} \operatorname{Pr}\left[X_{\pi(l)}<T\right]
$$

Achieving the Optimal Threshold Ratio if

$$
\begin{aligned}
c_{i} & =\sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \prod_{l=1}^{k-1} \operatorname{Pr}\left[X_{\pi(I)}<T\right] \\
& \left.=\sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \sum_{S \subset[n]} \operatorname{Pr}[\sigma(S)=[k-1]] \mid \pi(k)=i\right] \prod_{j \in S} \operatorname{Pr}\left[X_{j}<T\right] \\
& =\sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \sum_{S \subset[n]} p_{k, i}(S) \prod_{j \in S} q_{j} \\
& \stackrel{\text { AM-GM }}{\geq} \sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \prod_{S \subset[n]}\left(\prod_{j \in S} q_{j}\right)^{p_{k, i}(S)} \\
& =\sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \prod_{j \in[n] \backslash\{i\}} q_{j}^{\sum_{S \subset[n] j j \in S} P_{k, i}(S)} \\
& =\sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \prod_{j \in[n] \backslash\{i\}} q_{j}^{\operatorname{Pr}[\pi(k)<j \mid \pi(k)=i]}
\end{aligned}
$$

Achieving the Optimal Threshold Ratio

$$
\begin{aligned}
c_{i} & \geq \sum_{k=1}^{n} \operatorname{Pr}[\pi(k)=i] \prod_{j \in[n] \backslash\{i\}} q_{j}^{\operatorname{Pr}[\pi(k)<j \mid \pi(k)=i]} \\
& \geq \frac{1}{n} \sum_{k=1}^{n}\left(\prod_{j \in[n] \backslash\{i\}} q_{j}\right)^{\frac{k-1}{n-1}} \\
& \geq \frac{1}{n} \sum_{k=1}^{n}(1-p)^{\frac{k-1}{n-1}}=\frac{1}{n} \frac{1-(1-p)^{\frac{n}{n-1}}}{1-(1-p)^{\frac{1}{n-1}}} \stackrel{n \rightarrow+\infty}{\simeq} \frac{p}{-\ln (1-p)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \mathbb{E}[\text { Gambler }] \geq p T+\frac{p}{-\ln (1-p)} \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-T\right)^{+}\right] \\
& \stackrel{p=1-\frac{1}{e}}{=}\left(1-\frac{1}{e}\right) \mathbb{E}[\text { Prophet }]
\end{aligned}
$$

Achieving the Optimal Threshold Ratio

Theorem ([A.-Drosis-Kleinberg, SODA '21]) Let σ be a random permutation of $[n]$ sampled from an $\left(\varepsilon, \varepsilon^{2}\right)$-almost pairwise independent distribution of permutations. Then, there exists a threshold T such that:

$$
\mathbb{E}[\text { Gambler }] \geq\left(1-\frac{1}{e}-O(\varepsilon)\right) \mathbb{E}[\text { Prophet }]
$$

Definition

A distribution Π on permutations of $[\eta]$ is (ε, δ)-almost pairwise independent if for every $i \neq j$, the distribution of $\left(\left\lceil\frac{\sigma(i)}{\varepsilon n}\right\rceil,\left\lceil\frac{\sigma(j)}{\varepsilon n}\right\rceil\right)$ is δ-close (in
TV-distance), to the uniform distribution on $\left[\frac{1}{\varepsilon}\right] \times\left[\frac{1}{\varepsilon}\right]$.

Lemma

For any $\varepsilon, \delta>0$ (with $1 / \varepsilon \in \mathbb{Z}, 1 / \varepsilon \mid n$ and $\varepsilon n \geq 2 / \delta$), then there exists a set Π of $O\left(\left(\frac{1}{\delta \varepsilon}\right)^{2} \log n\right)$ permutations such that the uniform distribution over Π is (ε, δ)-almost pairwise independent.

Conclusion

Q: For a given α, what is the minimum size m of Π such that $\operatorname{TPR}(\Pi) \geq \alpha$?

$\alpha \in\left[0, \frac{1}{2}\right]$	$m=1$
$\alpha \in\left(\frac{1}{2}, \varphi^{-1}\right)$	$m=2$
$\alpha \in\left(\varphi^{-1}, 1-\frac{1}{e}\right)$	$m=\Theta(\log n)$
$\alpha=1-\frac{1}{e}$	$m=O\left(n^{2}\right)$

Open Questions in the area

- Bridge the gaps in our theorems:

Open Questions in the area

- Bridge the gaps in our theorems:
- $\alpha=1-\frac{1}{e}-\varepsilon$ vs. $\alpha=1-\frac{1}{e}\left(\Theta(\log n)\right.$ vs $O\left(n^{2}\right)$ permutations $)$.

Open Questions in the area

- Bridge the gaps in our theorems:
- $\alpha=1-\frac{1}{e}-\varepsilon$ vs. $\alpha=1-\frac{1}{e}\left(\Theta(\log n)\right.$ vs $O\left(n^{2}\right)$ permutations $)$.
- What's the exact barrier for beating the golden ratio?

Open Questions in the area

- Bridge the gaps in our theorems:
- $\alpha=1-\frac{1}{e}-\varepsilon$ vs. $\alpha=1-\frac{1}{e}\left(\Theta(\log n)\right.$ vs $O\left(n^{2}\right)$ permutations $)$.
- What's the exact barrier for beating the golden ratio?
- What about non-threshold stopping rules?
- The power to update the threshold can bypass some of the barriers we discussed here.

Open Questions in the area

- Bridge the gaps in our theorems:
- $\alpha=1-\frac{1}{e}-\varepsilon$ vs. $\alpha=1-\frac{1}{e}\left(\Theta(\log n)\right.$ vs $O\left(n^{2}\right)$ permutations $)$.
- What's the exact barrier for beating the golden ratio?
- What about non-threshold stopping rules?
- The power to update the threshold can bypass some of the barriers we discussed here.
- Optimal stopping rules are difficult to analyze even for small n.

Open Questions in the area

- Bridge the gaps in our theorems:
- $\alpha=1-\frac{1}{e}-\varepsilon$ vs. $\alpha=1-\frac{1}{e}\left(\Theta(\log n)\right.$ vs $O\left(n^{2}\right)$ permutations $)$.
- What's the exact barrier for beating the golden ratio?
- What about non-threshold stopping rules?
- The power to update the threshold can bypass some of the barriers we discussed here.
- Optimal stopping rules are difficult to analyze even for small n.
- What is the best gambler-to-prophet ratio for the free order setting? What about the random order?

Question Time

Thank You!
 Questions?

References

Correa，J．，Foncea，P．，Hoeksma，R．，Oosterwijk，T．，and Vredeveld，T．（2017）．
Posted price mechanisms for a random stream of customers．
In Proceedings of the 2017 ACM Conference on Economics and Computation，EC＇17，page 169－186，New York，NY，USA．Association for Computing Machinery．
國
Correa，J．R．，Saona，R．，and Ziliotto，B．（2019）．
Prophet secretary through blind strategies．
In Chan，T．M．，editor，Proceedings of the Thirtieth Annual ACM－SIAM Symposium on Discrete Algorithms， SODA 2019，San Diego，California，USA，January 6－9，2019，pages 1946－1961．SIAM．
R Hill，T．P．and Kertz，R．P．（1982）．
Comparisons of stop rule and supremum expectations of i．i．d．random variables．
Ann．Probab．，10（2）：336－345．
Krengel，U．and Sucheston，L．（1977）．
Semiamarts and finite values．
Bull．Amer．Math．Soc．，83：745－747．
國
Samuel－Cahn，E．（1984）．
Comparison of threshold stop rules and maximum for independent nonnegative random variables．
Annals of Probability，12（4）：1213－1216．
國
Yan，Q．（2011）．
Mechanism design via correlation gap．
In Randall，D．，editor，Proceedings of the Twenty－Second Annual ACM－SIAM Symposium on Discrete Algorithms，SODA 2011，San Francisco，California，USA，January 23－25，2011，pages 710－719．SIAM．

[^0]: ${ }^{1}$ Clip-art source: https://gallery.yopriceville.com/Free-Clipart-Pictures/

