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Prophet Inequalities — Standard setting

e Sequence of n independent, non-negative random variables:
X1, X, ..., X

e Gambler: Knows n and the distribution D; of each X;.
Can inspect the r.v.’s in the given order.
Accepts at most one of the values, X, as reward.
Acceptance decisions are irrevocable.
e Prophet: Knows the values of all variables.
Always chooses the maximum of them, i.e. X, = max; X;.
e Stopping rule 7: Algorithm that gambler follows for a given D1, ..., D,.
e Prophet Inequality is a statement of the following form:
For all D1,...,D,, there exists a stopping rule 7 s.t.:

E[X;] > r- E[X,]
e Gambler-to-prophet/Competitive ratio:

o L OEX]
B D1,--sDn Stopping rule 7 E[X*]




A Note on Stopping Rules

e Threshold stopping rule: Gambler decides on a threshold T.

e If Gambler reaches X; > T, then Gambler accepts.
e |f Gambler reaches X; < T, then Gambler rejects and proceeds.
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Why are we interested in Prophet Inequalities?

e Mathematicians started looking into this problem in the 70s and 80s.

e Models real-life situations where decisions have to be made under
uncertainty
e.g. Hiring and job interviews, investing in the stock market or even
choosing a life partner!

e Regained attention by Computer Scientists in the late 2000s because of
it's applications in Mechanism Design:

e Selling an item to n potential buyers.

e Buyers arrive sequentially and are offered a take-it or leave-it price for the
item.

e Simpler compared to e.g. an auction

e Take-it or leave-it price corresponds to the threshold of a stopping rule.

e Prophet inequalities provide welfare/revenue guarantees for Sequential
Posted-Price Mechanisms.
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Standard Prophet Inequality

Theorem ([Samuel-Cahn, 1984, Krengel and Sucheston, 1977])
There exists a (threshold) stopping rule that satisfies a prophet inequality with

factor 1/2.
Proof.
Let T be the threshold and let Pr[max X; > T] = p € [0, 1].

E[X.] =E [nialxX;] E[X:] = ZX Ifr = i]
<E[T 4 max(xi — T)'] —E {ZT,H[T—ME”:(X,-— T) Ifr =
<T+SE[X-T) -, -
; . ] =pT+> c E[X—T)]

where ¢; = Pr[No item is accepted before reaching X;].
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¢i = Pr[No item is accepted before reaching Xi] > 1 — p

Substitute back,

n

E[Gambler] > pT + (1 - p) Y JE[(X; - T)"]

i=1

11



Standard Prophet Inequality

E[X.] < T+ zn:]E[(X,- - 7)Y E[X;] = pT + Zn: ¢ -E[(Xi— T

i=1 i=1
¢i = Pr[No item is accepted before reaching Xi] > 1 — p

Substitute back,

n

E[Gambler] > pT + (1 - p) Y JE[(X; - T)"]

i=1

Choose T s.t. p=1—p.

E[Gambler] ’ 21/2 % <T + i]E [(Xi — T)+]>

> = - E[Prophet]

N =



Standard Prophet Inequality

e Previous result is tight even for general stopping rules:

1

Xi=1 Xo=14 ¢
oo {0, wp.1l—¢

w.p. £

E[Prophet]:sA§+(lf€)-1:2f€

E[Gambler] =1
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Standard Prophet Inequality

e Previous result is tight even for general stopping rules:

1

Xi=1, Xo={ ¢’
! ? {0, w.p. 1l—¢

w.p. £

E[Prophet]:sA§+(lf€)-1:2f€
E[Gambler] =1

e Takeaway: The reason Gambler does bad is high uncertainty far in the
future.

12
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Constrained-Order Prophet Inequalities

We augment the prophet inequalities model to allow for order-selection:

e [1: set of permutations on [n].

e Gambler can choose any 7 € 1 and inspect the variables in that order:
X7'r(1)7 X7r(2)7 o elely XTr(n)
e Adversarial Order: I = {id},

i.e. gambler must inspect the variables in the order given by the adversary.

e Free Order: 1 = S, the set of all permutations on n elements,
i.e. gambler is free to choose any ordering.

e Random Order (Prophet secretary problem):
M =S, but 7 is chosen uniformly at random.

e Forward-Reverse order: 1 = {id, rev}.

General Constrained-Order: Arbitrary 1.

13



e Adversarial Order: Models the uncertainty in decision making.

e Free Order: Models the power that choice gives us in decision making
under uncertainty.

e Constrained Order: Offers a way to understand better where the power of
choice comes from.

14



Threshold Rules General Rules
Adversarial 1/2 [Samuel-Cahn, 1984] 1/2 [Krengel and Sucheston, 1977]
1-— 4 =0.632... LB: 0.669. .. [correae al.,
Free Order € [C ol 2o
[Yan, 2011, Correa et al., 2017] UB: 0.745 . .. [Hill and Kertz, 1982]
LB: 0.669. .. [corea et al, 2019]
Random Order =25
€ UB: v/3—1=0.732... [Correa ct al. 2019]

15



Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and
Free order setting.
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Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and
Free order setting.

Definition
For I C S, define the threshold prophet ratio on [1 as follows:

TPR(M) = _inf su E[Gambler]
D1-:Dn threshold stopp[i)ng rule on 1 ]E[Prophet]

Q: For a given «, what is the minimum size m of N such that TPR(IM) > a? ‘

a € [0, %] m=1

a € (%,@71) m=2
a€(p1-1) | m=0(logn)
@
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Forward-Reverse Order Prophet Inequality

Theorem ([A-Drosis-Kleinberg, SODA '21])
In the forward-reverse prophet inequality setting, there exists a threshold

stopping rule with a gambler-to-prophet ratio of at least
pl=51_0618...
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Forward-Reverse Order Prophet Inequality

Theorem ([A-Drosis-Kleinberg, SODA '21])
In the forward-reverse prophet inequality setting, there exists a threshold

stopping rule with a gambler-to-prophet ratio of at least
pl=51_0618...

Proof.

Pick 7 € {id, rev} uniformly at random.
Similarly to previous proof, set threshold T s.t. PrimaxX; > T] = p € [0, 1].
Again,

E[Prophet] < T + Z E[(X;—T)"]

i=1

E[Gambler] = pT + z": ¢-E[(Xi—T)"]

i=1
where ¢; = Pr[No element is selected before reaching X].
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Forward-Reverse Order Prophet Inequality

=3 (HPr[xj < TI+]]PriX > “)

J<i Jj>i
1/2
AM-GM n
[Prix < T
J#i
>vV1-p

Substitute back,

E[Gambler] 2 pT + 1=+ 3 E [(X — T)7]

e ot (T + ZH:E [(Xi — T)ﬂ)

> ¢ ' E[Prophet]

18



Forward/Reverse Order Upper Bound

Lemma
When n > 3 and 1N = {id, rev}, no threshold stopping rule can have a

gambler-to-prophet ratio greater than ¢~ *.

Proof sketch.
e For n=3:

24;;71

Xi=U[l-¢g1], Xo= g ¢
! [ ] ? {07 w.p. 1l—¢

WPE L Xy =U[l—e, 1]

e For n> 3:
Let i < j < k be arbitrary r.v. indices. Define Xj, Xj, Xk just like X1, X2, X3
above and let X; =0 for all / ¢ {i, ], k}.

19
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Beating the golden ratio

e Two permutations suffice to go from 0.5 to ¢! = 0.618.. ..
e Q: How many permutations are needed to guarantee a ratio > ¢ *?

e ldea: Require the existence of a “central element”.
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Beating the golden ratio

Definition
We say j € [n] is e-centered w.r.t. I1 (a set of permutations of [n]) if there
exists a probability distribution p on [n] \ {j} such that:

Vo e N:Prir () <a '()] >1/2—¢
Pricp[r 1(i) > 7 '()] > 1/2—¢
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Beating the golden ratio

Definition
We say j € [n] is e-centered w.r.t. I1 (a set of permutations of [n]) if there
exists a probability distribution p on [n] \ {j} such that:

Vo e N:Prir () <a '()] >1/2—¢
Pricp[r 1(i) > 7 '()] > 1/2—¢

Lemma
If T is a set of permutations of [n] and j is an e-centered element w.r.t. T,

then TPR(M) < ¢~ + O(e).

Lemma (Exact)
If IN| < /log n, then 3j € [n] that is (0)-centered w.r.t. 1.

Lemma (Approximate)
If N| < log, . n for e >0, then 3j € [n] that is e-centered w.r.t. T1.
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Achieving the Optimal Threshold Ratio

Convention:

e Variable indices: i € [n]
e Arrival position: k € [n]

mw:[n —=[n], o=x"":[n]—[n]
Definition
A distribution P over permutations 1 C S, is pairwise independent if:
Vi #j € [n], (o(i),o())) is distributed uniformly over
{(a,b) € [n] x [n] | @a # b} when 7 ~ P.
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Achieving the Optimal Threshold Ratio

Convention:

e Variable indices: i € [n]
e Arrival position: k € [n]

mw:[n —=[n], o=x"":[n]—[n]

Definition

A distribution P over permutations 1 C S, is pairwise independent if:
Vi #j € [n], (o(i),o())) is distributed uniformly over

{(a,b) € [n] x [n] | @a # b} when 7 ~ P.

Remark: Pairwise independent permutations behave like uniformly random
permutations,

22



Achieving the Optimal Threshold Ratio i

Lemma
For prime n, there exists a set 1 of n(n — 1) permutations such that the
uniform distribution over I is pairwise independent.

Proof sketch: 7, (k) = ak + b (mod n), a~ U[n — 1], b ~ U[n].

23



Achieving the Optimal Threshold Ratio i

Theorem ([A.-Drosis-Kleinberg, SODA '21])
Let m be a random permutation of [n] sampled from a pairwise-independent

distribution of permutations. Then, there exists a threshold T such that:
1
E[Gambler] > (1 — g> - E[Prophet]

Proof. (resembles [Correa et al., 2019])
Again,
E[Gambler] = pT + Z ¢ -E[(Xi—T)"]

i=1

but now,
n k—1
¢ = Prr(k) =il ] PriX-() < T1
k=1 =1

24



Achieving the Optimal Threshold Ratio ii

ci =Y Prln(k)=i] 1:[ PrX.) < T]

:ZPF[T{' _I]ZPI‘[U k—].]]‘ﬂ'k)_l]HPF[X<T]

SCln] JES
=> Prr(k) =1 pei(S) ][] a
k=1 sclnl jes
Pi.i(S)
s ZPr[w(k =i [] |Ila
scin \Jjes
S
S oPir( = [T g
k=1 JElN{i}
— Z Prir(k) = i] H quf[W(k)<J' | w(k)=i]
k=1 JEMN{i}

25



Achieving the Optimal Threshold Ratio

2> Prr(k)=i J[ gt w0

L= Jeln\{i}

k—1

1 n n—1
> 2 .
= H q;

k=1 \je[n\{i}

1 k=1 11— (1—p)™T nostoo p
n2 LmP =0 ( )# = Ti@-p)
= M1—(1—p)mT n(l-p

Vv

Hence,

E[Gambler] > pT + ﬁ ,XH:E[(Xi — 7)1

—1_ 1
— <1 - %) E[Prophet]

26



Achieving the Optimal Threshold Ratio

Theorem ([A.-Drosis-Kleinberg, SODA '21])
Let o be a random permutation of [n] sampled from an (z,<%)-almost

pairwise independent distribution of permutations. Then, there exists a
threshold T such that:

E[Gambler] > <1 - é—O(a)) E[Prophet]

Definition
A distribution I on permutations of [n] is (e, §)-almost pairwise independent
if for every i # j, the distribution of ([g—‘ , (%D is d-close (in

TV-distance), to the uniform distribution on [1] x [].

Lemma
For any €,6 > 0 (with 1/e € Z, 1/¢|n and en > 2/§), then there exists a set I1

of O((i)2 log n) permutations such that the uniform distribution over I is
(g,0)-almost pairwise independent.

27



Conclusion

Q: For a given «, what is the minimum size m of I such that TPR(I) > a? ‘

a € [0,%] m=1

a € (%7g071) m=2

a€ (e 1-1) | m=06(logn)
a=1-1 m = 0(n?)

28
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Open Questions in the area

e Bridge the gaps in our theorems:
e a=1-— % —evs.a=1-— % (©(log n) vs O(n?) permutations).
e What's the exact barrier for beating the golden ratio?

e What about non-threshold stopping rules?
e The power to update the threshold can bypass some of the barriers we
discussed here.
e Optimal stopping rules are difficult to analyze even for small n.
e What is the best gambler-to-prophet ratio for the free order setting? What

about the random order?

29



Thank You!

Questions?

30
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