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Prophet Inequalities



Prophet Inequalities — Example

U[$10, $20] U[$1, $50]

{
$1, 000, w.p. 0.01

$0, w.p. 0.99
U[$0, $10]
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Prophet Inequalities — Example
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Prophet Inequalities — Example
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Prophet Inequalities — Example

$17 $3 $0 $6
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Prophet Inequalities — Standard setting

• Sequence of n independent, non-negative random variables:

X1,X2, . . . ,Xn

• Gambler: Knows n and the distribution Di of each Xi .

Can inspect the r.v.’s in the given order.

Accepts at most one of the values, Xτ , as reward.

Acceptance decisions are irrevocable.

• Prophet: Knows the values of all variables.

Always chooses the maximum of them, i.e. X∗ = maxi Xi.

• Stopping rule τ : Algorithm that gambler follows for a given D1, . . . ,Dn.

• Prophet Inequality is a statement of the following form:

For all D1, . . . ,Dn, there exists a stopping rule τ s.t.:

E[Xτ ] ≥ r · E[X∗]

• Gambler-to-prophet/Competitive ratio:

r = inf
D1,...,Dn

sup
Stopping rule τ

E[Xτ ]

E[X∗]
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A Note on Stopping Rules

• Threshold stopping rule: Gambler decides on a threshold T .

• If Gambler reaches Xi > T , then Gambler accepts.

• If Gambler reaches Xi < T , then Gambler rejects and proceeds.
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Why are we interested in Prophet Inequalities?

• Mathematicians started looking into this problem in the 70s and 80s.

• Models real-life situations where decisions have to be made under

uncertainty

e.g. Hiring and job interviews, investing in the stock market or even

choosing a life partner!

• Regained attention by Computer Scientists in the late 2000s because of

it’s applications in Mechanism Design:

• Selling an item to n potential buyers.

• Buyers arrive sequentially and are offered a take-it or leave-it price for the

item.

• Simpler compared to e.g. an auction

• Take-it or leave-it price corresponds to the threshold of a stopping rule.

• Prophet inequalities provide welfare/revenue guarantees for Sequential

Posted-Price Mechanisms.
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Standard Prophet Inequality

Theorem ([Samuel-Cahn, 1984, Krengel and Sucheston, 1977])
There exists a (threshold) stopping rule that satisfies a prophet inequality with

factor 1/2.

Proof.

Let T be the threshold and let Pr[maxXi ≥ T ] = p ∈ [0, 1].

E[X∗] = E
[

n
max
i=1

Xi

]
≤ E

[
T +

n
max
i=1

(Xi − T )+
]

≤ T +
n∑

i=1

E
[
(Xi − T )+]

E[Xτ ] = E

[
n∑

i=1

Xi · I[τ = i ]

]

= E

[
n∑

i=1

T · I[τ = i ] +
n∑

i=1

(Xi − T ) · I[τ = i ]

]

= pT +
n∑

i=1

ci · E
[
(Xi − T )+]

where ci = Pr[No item is accepted before reaching Xi ].
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Standard Prophet Inequality

E[X∗] ≤ T +
n∑

i=1

E[(Xi − T )+] E[Xτ ] = pT +
n∑

i=1

ci · E[(Xi − T )+]

ci = Pr[No item is accepted before reaching Xi ]

Bound ci :

ci =
∏
j<i

Pr[Xj < T ] ≥
n∏

j=1

Pr[Xj < T ] = 1− p
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Standard Prophet Inequality

• Previous result is tight even for general stopping rules:

X1 = 1, X2 =

{
1
ε
, w.p. ε

0, w.p. 1− ε

E[Prophet] = ε · 1

ε
+ (1− ε) · 1 = 2− ε

E[Gambler] = 1

• Takeaway: The reason Gambler does bad is high uncertainty far in the

future.
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Constrained-Order Prophet Inequalities



Constrained-Order Prophet Inequalities

We augment the prophet inequalities model to allow for order-selection:

• Π: set of permutations on [n].

• Gambler can choose any π ∈ Π and inspect the variables in that order:

Xπ(1),Xπ(2), . . . ,Xπ(n)

• Adversarial Order: Π = {id},
i.e. gambler must inspect the variables in the order given by the adversary.

• Free Order: Π = Sn, the set of all permutations on n elements,

i.e. gambler is free to choose any ordering.

• Random Order (Prophet secretary problem):

Π = Sn but π is chosen uniformly at random.

• Forward-Reverse order: Π = {id, rev}.

• General Constrained-Order: Arbitrary Π.

13



Motivation

• Adversarial Order: Models the uncertainty in decision making.

• Free Order: Models the power that choice gives us in decision making

under uncertainty.

• Constrained Order: Offers a way to understand better where the power of

choice comes from.

14



What is known?

Threshold Rules General Rules

Adversarial 1/2 [Samuel-Cahn, 1984] 1/2 [Krengel and Sucheston, 1977]

Free Order
1− 1

e
= 0.632 . . . LB: 0.669 . . . [Correa et al., 2019]

[Yan, 2011, Correa et al., 2017] UB: 0.745 . . . [Hill and Kertz, 1982]

Random Order 1− 1
e

LB: 0.669 . . . [Correa et al., 2019]

UB:
√

3− 1 = 0.732 . . . [Correa et al., 2019]
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Our Contribution

We are exploring the landscape between the two extremes: the Adversarial and

Free order setting.

Definition
For Π ⊆ Sn, define the threshold prophet ratio on Π as follows:

TPR(Π) = inf
D1,...,Dn

sup
threshold stopping rule on Π

E[Gambler]

E[Prophet]

Q: For a given α, what is the minimum size m of Π such that TPR(Π) ≥ α?

α ∈
[
0, 1

2

]
m = 1

α ∈
(

1
2
, ϕ−1

)
m = 2

α ∈
(
ϕ−1, 1− 1

e

)
m = Θ(log n)

α = 1− 1
e

m = O(n2)
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Forward-Reverse Prophet Inequality



Forward-Reverse Order Prophet Inequality

Theorem ([A-Drosis-Kleinberg, SODA ’21])
In the forward-reverse prophet inequality setting, there exists a threshold

stopping rule with a gambler-to-prophet ratio of at least

ϕ−1 =
√

5−1
2 = 0.618 . . .

Proof.

Pick π ∈ {id, rev} uniformly at random.

Similarly to previous proof, set threshold T s.t. Pr[maxXi ≥ T ] = p ∈ [0, 1].

Again,

E[Prophet] ≤ T +
n∑

i=1

E
[
(Xi − T )+]

E[Gambler] = pT +
n∑

i=1

ci · E
[
(Xi − T )+]

where ci = Pr[No element is selected before reaching Xi ].
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Forward-Reverse Order Prophet Inequality

ci =
1

2

(∏
j<i

Pr[Xj < T ] +
∏
j>i

Pr[Xj > T ]

)

AM-GM

≥

 n∏
j 6=i

Pr[Xj < T ]

1/2

≥
√

1− p

Substitute back,

E[Gambler] ≥ pT +
√

1− p ·
n∑

i=1

E
[
(Xi − T )+]

p=ϕ−1

= ϕ−1

(
T +

n∑
i=1

E
[
(Xi − T )+])

≥ ϕ−1 · E[Prophet]

18



Forward/Reverse Order Upper Bound

Lemma
When n ≥ 3 and Π = {id, rev}, no threshold stopping rule can have a

gambler-to-prophet ratio greater than ϕ−1.

Proof sketch.

• For n = 3:

X1 = U[1− ε, 1], X2 =

{
2ϕ−1

ε
, w.p. ε

0, w.p. 1− ε
, X3 = U[1− ε, 1]

• For n > 3:

Let i < j < k be arbitrary r.v. indices. Define Xi ,Xj ,Xk just like X1,X2,X3

above and let Xl = 0 for all l /∈ {i , j , k}.

19



Beating the Golden Ratio



Beating the golden ratio

• Two permutations suffice to go from 0.5 to ϕ−1 = 0.618 . . ..

• Q: How many permutations are needed to guarantee a ratio > ϕ−1?

• Idea: Require the existence of a “central element”.
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Beating the golden ratio

Definition
We say j ∈ [n] is ε-centered w.r.t. Π (a set of permutations of [n]) if there

exists a probability distribution p on [n] \ {j} such that:

∀π ∈ Π : Pri∼p[π−1(i) < π−1(j)] ≥ 1/2− ε

Pri∼p[π−1(i) > π−1(j)] ≥ 1/2− ε

Lemma
If Π is a set of permutations of [n] and j is an ε-centered element w.r.t. Π,

then TPR(Π) ≤ ϕ−1 + O(ε).

Lemma (Exact)
If |Π| <

√
log n, then ∃j ∈ [n] that is (0)-centered w.r.t. Π.

Lemma (Approximate)
If |Π| < log1/ε n for ε > 0, then ∃j ∈ [n] that is ε-centered w.r.t. Π.
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Achieving the Optimal Threshold Ratio

Convention:

• Variable indices: i ∈ [n]

• Arrival position: k ∈ [n]

π : [n]→ [n], σ = π−1 : [n]→ [n]

Definition
A distribution P over permutations Π ⊆ Sn is pairwise independent if:

∀i 6= j ∈ [n], (σ(i), σ(j)) is distributed uniformly over

{(a, b) ∈ [n]× [n] | a 6= b} when π ∼ P.

Remark: Pairwise independent permutations behave like uniformly random

permutations,

Prπ∼P [σ(i) = k] =
1

n
, ∀i , k ∈ [n]

Prπ∼P [σ(j) < k|σ(i) = k] =
k − 1

n − 1
, ∀i 6= j , k ∈ [n]
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Achieving the Optimal Threshold Ratio i

Lemma
For prime n, there exists a set Π of n(n− 1) permutations such that the

uniform distribution over Π is pairwise independent.

Proof sketch: πa,b(k) = ak + b (mod n), a ∼ U[n − 1], b ∼ U[n].

23



Achieving the Optimal Threshold Ratio i

Theorem ([A.-Drosis-Kleinberg, SODA ’21])
Let π be a random permutation of [n] sampled from a pairwise-independent

distribution of permutations. Then, there exists a threshold T such that:

E[Gambler] ≥
(

1− 1

e

)
· E[Prophet]

Proof. (resembles [Correa et al., 2019])

Again,

E[Gambler] = pT +
n∑

i=1

ci · E
[
(Xi − T )+]

but now,

ci =
n∑

k=1

Pr[π(k) = i ]
k−1∏
l=1

Pr[Xπ(l) < T ]
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Achieving the Optimal Threshold Ratio ii

ci =
n∑

k=1

Pr[π(k) = i ]
k−1∏
l=1

Pr[Xπ(l) < T ]

=
n∑

k=1

Pr[π(k) = i ]
∑
S⊂[n]

Pr[σ(S) = [k − 1]] | π(k) = i ]
∏
j∈S

Pr[Xj < T ]

=
n∑

k=1

Pr[π(k) = i ]
∑
S⊂[n]

pk,i (S)
∏
j∈S

qj

AM-GM

≥
n∑

k=1

Pr[π(k) = i ]
∏
S⊂[n]

∏
j∈S

qj

pk,i (S)

=
n∑

k=1

Pr[π(k) = i ]
∏

j∈[n]\{i}

q
∑

S⊂[n]:j∈S pk,i (S)

j

=
n∑

k=1

Pr[π(k) = i ]
∏

j∈[n]\{i}

q
Pr[π(k)<j | π(k)=i ]
j
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Achieving the Optimal Threshold Ratio

ci ≥
n∑

k=1

Pr[π(k) = i ]
∏

j∈[n]\{i}

q
Pr[π(k)<j | π(k)=i ]
j

≥ 1

n

n∑
k=1

 ∏
j∈[n]\{i}

qj


k−1
n−1

≥ 1

n

n∑
k=1

(1− p)
k−1
n−1 =

1

n

1− (1− p)
n

n−1

1− (1− p)
1

n−1

n→+∞' p

− ln(1− p)

Hence,

E[Gambler] ≥ pT +
p

− ln(1− p)

n∑
i=1

E[(Xi − T )+]

p=1− 1
e=

(
1− 1

e

)
E[Prophet]
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Achieving the Optimal Threshold Ratio

Theorem ([A.-Drosis-Kleinberg, SODA ’21])
Let σ be a random permutation of [n] sampled from an (ε, ε2)-almost

pairwise independent distribution of permutations. Then, there exists a

threshold T such that:

E[Gambler] ≥
(

1− 1

e
−O(ε)

)
E[Prophet]

Definition
A distribution Π on permutations of [n] is (ε, δ)-almost pairwise independent

if for every i 6= j , the distribution of
(⌈

σ(i)
εn

⌉
,
⌈
σ(j)
εn

⌉)
is δ-close (in

TV-distance), to the uniform distribution on [ 1
ε

]× [ 1
ε

].

Lemma
For any ε, δ > 0 (with 1/ε ∈ Z, 1/ε|n and εn ≥ 2/δ), then there exists a set Π

of O(( 1
δε

)2 log n) permutations such that the uniform distribution over Π is

(ε, δ)-almost pairwise independent.
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Conclusion

Q: For a given α, what is the minimum size m of Π such that TPR(Π) ≥ α?

α ∈
[
0, 1

2

]
m = 1

α ∈
(

1
2
, ϕ−1

)
m = 2

α ∈
(
ϕ−1, 1− 1

e

)
m = Θ(log n)

α = 1− 1
e

m = O(n2)
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Open Questions in the area

• Bridge the gaps in our theorems:

• α = 1 − 1
e
− ε vs. α = 1 − 1

e
(Θ(log n) vs O(n2) permutations).

• What’s the exact barrier for beating the golden ratio?

• What about non-threshold stopping rules?

• The power to update the threshold can bypass some of the barriers we

discussed here.

• Optimal stopping rules are difficult to analyze even for small n.

• What is the best gambler-to-prophet ratio for the free order setting? What

about the random order?
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Question Time

Thank You!
Questions?

30



References

Correa, J., Foncea, P., Hoeksma, R., Oosterwijk, T., and Vredeveld, T. (2017).

Posted price mechanisms for a random stream of customers.

In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, page 169–186, New

York, NY, USA. Association for Computing Machinery.

Correa, J. R., Saona, R., and Ziliotto, B. (2019).

Prophet secretary through blind strategies.

In Chan, T. M., editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1946–1961. SIAM.

Hill, T. P. and Kertz, R. P. (1982).

Comparisons of stop rule and supremum expectations of i.i.d. random variables.

Ann. Probab., 10(2):336–345.

Krengel, U. and Sucheston, L. (1977).

Semiamarts and finite values.

Bull. Amer. Math. Soc., 83:745–747.

Samuel-Cahn, E. (1984).

Comparison of threshold stop rules and maximum for independent nonnegative random variables.

Annals of Probability, 12(4):1213–1216.

Yan, Q. (2011).

Mechanism design via correlation gap.

In Randall, D., editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 710–719. SIAM.

31


	Introduction
	Brief survey + Our Contributions
	Forward-Reverse Prophet Inequality
	Beating the Golden Ratio
	Achieving the Optimal Threshold Ratio

